Structure of Multicomponent Polymers

Lithography Applications

Protein-Polymer Mixtures

Morphology Control in Organic Solar Cells

Ellison and Willson – Control surface interactions to facilitiate next generation semiconductor applications

Structure of Multicomponent Polymers

Lithography Applications

Protein-Polymer Mixtures

Morphology Control in Organic Solar Cells

Verduzo (Rice) – Design block copolymer additives to enhance efficiencies of solar cells.

Transport Properties of Polymer Materials

Transport Properties of Polymer Materials

Methanol Fuel Cells

Water, Protons, Methanol

- Influence of morphology on membrane properties?
- Optimize the membrane design?

Transport Properties of Polymer Materials

Battery Electrolytes

Cations and Anions

Water Purification

Water and Salt

We study...

Fundamental mechanisms underlying properties

Fig. 6. Variation of $\log_{10}D$ for ⁷Li in PEO-LiCF₃SO₃ with an ethylene oxide to lithium ratio of 20:1 at 70°C () and 90°C () as a function of molecular weight, M.

Lithium Ion Conductivities in Battery Materials

We study...

Fundamental mechanisms underlying properties

Salt Diffusion in Reverse Osmosis Membranes

Computer Simulations and New Methods

Atomistic Scale Simulations

Computer Simulations and New Methods

Atomistic Scale Simulations

Computer Simulations and New Methods

New Models

$$\nabla \cdot (\varepsilon \nabla \psi) = -(p-n)$$

$$\frac{\partial n}{\partial t} = D(\mathbf{E}) - R(n, p) + \frac{1}{q} \nabla [q n \mathbf{\mu_n} \cdot \mathbf{E} + k_B T \mathbf{\mu_n} \cdot \nabla n]$$

$$\frac{\partial p}{\partial t} = D(\mathbf{E}) - R(n, p) - \frac{1}{q} \nabla [qp \mathbf{\mu}_{\mathbf{p}} \cdot \mathbf{E} - k_B T \mathbf{\mu}_{\mathbf{p}} \cdot \nabla p]$$

$$\frac{\partial x}{\partial t} = G(\mathbf{r}) + \frac{1}{4}R(n, p) - R_d(x) - D(\mathbf{E}) - \frac{1}{q}\nabla[-k_B T \mathbf{\mu_x} \cdot \nabla x]$$

Poisson's equation

Electron (n)

Hole (p)

Exciton (x)

Model for device characteristics of OPV materials

We predict...

Means to improve properties

Manthiram, ME/CHE

	Base
ABIm	
Blm	
BTraz	
NBIm \uparrow	
Plmd	

We predict...

Means to improve properties

Manthiram, ME/CHE

We predict...

Mechanisms underlying experimental results

Lynn Loo, Princeton Univ

Where are we going?

Where are we going?

