

## **Materials Chemistry for Energy**

**Buddie Mullins** 

### **UT-Austin**

1. Nano-Structured Materials for

for I



Gold Clu

3. Anoc Li-lo

Large-Scale Use



Prof. I







**Prof. Heller** 



## Solar Photoelectrochemical Water-Splitting with "Abundant" Materials





# Surface Chemistry of Nano-Structured Surfaces

**Tools** 



Exploratory studies of catalysis/"surface chemistry" - green processing, fuel cells and fundamental insights.

**Examples** 

Nano-Structured Titanium Carbide Film which has Pt-like Catalytic Properties.



Goodman-Science (1998)

TiO<sub>2</sub> Clusters and Hwang Osgood, Hrbek-Nano Lett. (2005)

## **Anode Materials for Li-Ion Batteries**



Carbon is typically used as anode in Li-lon batt.'s but safety issues persist

Need alternate materials:

- Low voltage
- High capacity
- High Li transport
- Good electron conductor
- Small volume change
- Low cost and abundant
- Non-toxic and environmentally benign



Iron Oxide Nanorods





Our approach involves nanostructured sample synthesis, materials characterization, and electrochem. testing (e.g., Li transport, cyclability, capacity, etc.)

Copper Doped Silicon Nanorods



# Welcome to Austin!!



Mullins Research Group