Laboratory of Molecular Bioengineering & Protein Therapeutics

George Georgiou

Depts. of Chemical Engineering, Biomedical Engineering Molecular Genetics and Microbiology and Institute for Cell and Molecular Biology

University of Texas at Austin

Support by NCI, NIGMS, Cancer Prevention & Research Initiative of Texas, DARPA, ONR, The Clayton Foundation

Discovery & Development of Protein Therapeutics; What do Engineers Do?

- <u>Understanding the biology & identification of therapeutic</u>
 <u>targets</u> (systems biology)
- *Early discovery*: HTS/platform technologies for therapeutic protein discovery
- Animal models of disease/toxicology
- <u>Lead optimization</u>: engineering proteins for enhanced therapeutic function, stability
- Pharmacokinetics and Pharmacodynamic Optimization
- Manufacturing/Formulation
- Clinical Evaluation

Discovery Integration & Clinical Translation

GG Lab Therapeutics Program **Biochemical**/ **Biophysical &** Discovery **Platforms** Structural Analysis Animal Efficacy/Tox Pharmacokinetic & **Bioprocess Development** Pharmacodynamic **Optimization** (Microbial) Partnerships with **Clinical Groups**

Our Lab Pursues The Development of Protein Therapeutics from Discovery to Clinical Trials (unique in engineering) I. Enzyme Therapeutics for Systemic Metabolite Depletion in Cancer

I. Engineered Enzyme Therapeutic for Cancer

Rapidly proliferating cells have increased metabolic requirements

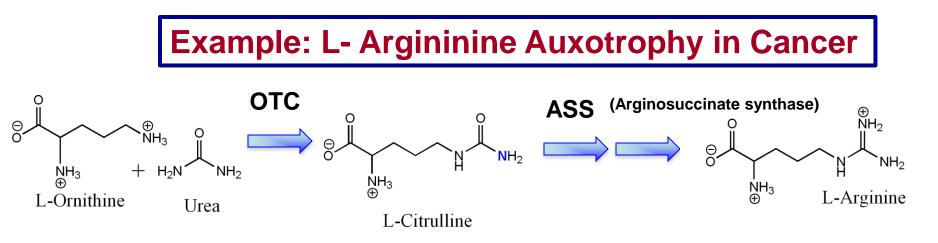
e.g. high glucose consumption (Warburg effect 1920;

molecular

mechanism discovered in 2008 by Cantley et al) AMINO ACID AUXOTROPHIES IN CANCER CELLS

Many cancers are unable to synthesize certain amino acids instead relying on uptake from serum; systemic depletion of as induces selective apoptosis of tumor cells.

Therapeutic modalities for aa deprivation


- Nutritional restriction
 - Difficult to achieve/compliance
 - Endogenous synthesis of metabolite can overcome nutritional limitation
- Pharmacological (drug-mediated) inhibition of biosynthetic pathways- affects normal and cancer cells, toxicity
- Eliminate essential metabolite by injecting an enzyme

Intravenous Administration of Enzymes For the Systemic Removal of AA Essential for Cancer Survival

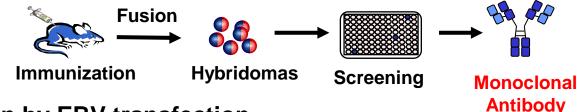
The human genome does not encode enzymes with <u>therapeutically</u> relevant catalytic activity or pharmacological properties

Non-human enzymes that exhibit the proper pharmacological action are immunogenic and elicit anti-enzyme antibodies

- Anaphylactic shock & death (bacterial L-methionine-γ-lyase)
- Inactivation and clearance of the therapeutic protein

Many high mortality tumors are deficient in ASS and/or OTC synthesis, cannot synthesize L-Arg and require on its uptake from serum

- Hepatocellular carcinomas (60%)
- Metastatic melanoma (35%)
- Pancreatic carcinomas (25-30%)
- Small cell lung carcinomas (45%)
- Acute myeloid leukemias (60%)
- Prostate carcinomas


GG Lab Protein Therapeutic Pipeline						
Early Stage Development				Late Stage		Clinical
Disease	Lead Molecule	Mechanism of Action	Animal PK/PD & Efficacy	Bio- Processing	GMP/ Formal Tox	Phase I
Metastatic melanoma Hepatic carcinoma	Eng. hu Arginase I [Mn-huArgl- PGE5K]	Systemic L-Arg depletion	J J J	Yes	In progress IND planned Sep '11	<mark>4th qt '11</mark> Melanoma AML, HCC
CNS tumors (GB, NB)	Eng hu Cystathione γ-Lyase	Systemic L-Met Depletion	J J J	Planned	2 nd Qt '12	3 rd Qt 12
Adult ALL, other lymphomas	Eng hu Aspragi- nase	Systemic L-Asn Depletion				
Inhalation Anthrax	Anthim® (Eng Ab)	Anthrax Toxin neutralization		Elusys Ind	; (Completed

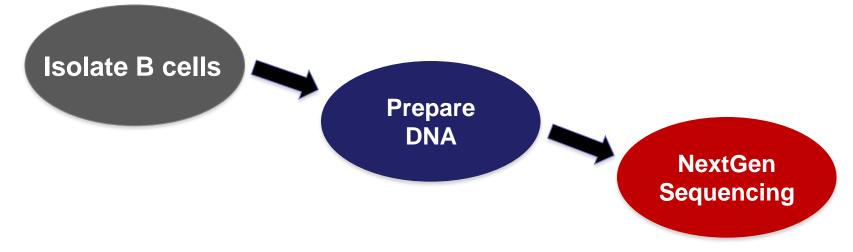
II. Therapeutic Antibodies

1. Antibody Discovery Technologies

I. Monoclonal Antibodies by B cell immortalization or cloning

- Hybridoma technology

- Immortalization by EBV transfection
- Single B cell cloning using microfluidic platforms


II. Abs by HTS of antibody ensembles (libraries) produced in microorganisms (multibillion dollar business)

Ab libraries: >10⁸ different proteins made by mol bio techniques from

- B cells post immunization
- Unimmunized (naïve) individuals
- Randomizing specific regions of Ab

III. "Third Wave": Ab discovery via NextGen DNA sequencing & bioinformatics Reddy et al. Nature Biotechnol (Sept 2010)

High Throughput Screening

- What antibodies are produced in higher amounts?
- How many different antibodies?
- Abs in secretory fluids (intestine, lung, mouth) vs blood?

What Molecules or Pathogens do they Recognize?

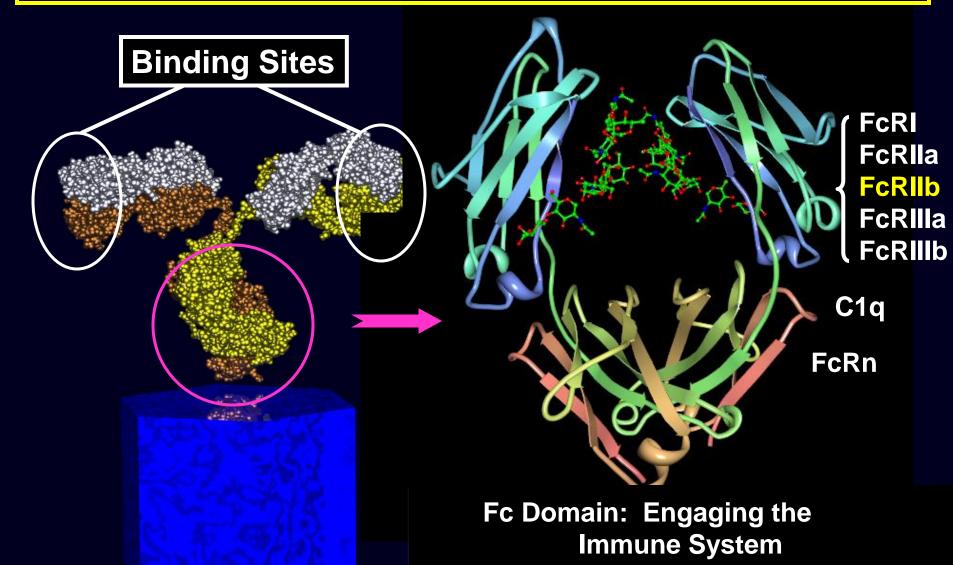
Converting Information to physical measurements

High Throughput Antibody Gene Synthesis

> Programming Bacteria to Produce the Respective Abs

Analyze Binding to Suspect Pathogens/Disease Markers

On Going Antibody Projects


Therapeutics and Diagnostics

- Antibodies for neutralization of SARS-CorV
- Complement inhibition (ischemic reperfusion injury, etc)
- A Breast cancer, Ovarian cancer, Lymphomas

Understanding Mammalian Antibody Immunity

How is the antibody repertoire formed

II. EngineeringAntibody Drugs Displaying Optimized Therapeutic Efficacy II. Antibody Therapeutic Optimization: Engineering Antibodies for Target Cell Killing (ADCC) and the *Induction of Adaptive Immune Responses*

II. Antibody Therapeutic Optimization

- Antibody:antigen complex ligation of the activating FcγR receptors elicits potent target cell killing by macrophages, natural killer cells, dendritic cells and granulocytes (ADCC)
- Essential for the action of Rituxan, important for Herceptin, Erbitux
- Huge investment on engineered antibodies with improved cytotoxicity e.g. second generation Rituxan, *Roche GA101, P. Umana*)

However, all antibodies engage the FcγRIIb receptor which mediates powerful anti-inflammatory responses, B cell apoptosis and inhibits immune complex mediated dendritic cell activation

Engineered first-in-class antibodies that bind exclusively to activating receptors and not to FcγRIIb (*Jung et al. PNAS 2010*)

- Evidence for induction of adaptive immunity
- Engineered Herceptin in evaluation in humanized mice (NOD scid $IL\gamma 2^{-/-}$ engrafted with human HSC and bearing Her2 tumors)

Acknowledgements

Our incredible team of students, post-docs and research scientists

Our many, many collaborators

University of Texas, Austin

Andy Ellington –Gene Synthesis Scott Hunicke-Smith; NextGen sequencing Brent L. Iverson –Bioorganic chemistry Ed Marcotte –Proteomics Phil Tucker -Immunology Carla VanDenBerg -Pharmacology Jessie Zhang -Protein crystallography

Key Collaborators

Art Frankel, Scott & White Jon Beckwith, Harvard

Also with various groups from

MD Anderson Cancer Center Memorial Sloan Kettering Harvard Stanford Medical School U. Chicago