Engineering at the interface of RNAprotein complexes for solving difficult problems in biology and medicine

Contreras-Martin Research Group

Laboratory of Molecular Engineering

University of Texas at Austin

Department of Chemical Engineering Austin, TX 78712 USA

What does Artic foxes and drug-resistant bacteria have in common?

Summer Environment

Summer Environment

Contreras-Martin Research Lab Graduate Recruiting Weekend- 2.26.2011

A challenge in fighting pathogenic bacteria

• Disease-causing microbes that have become resistant to antibiotic drug therapy are an increasing public health problem.

 ~ 70 percent of the bacteria that cause infections in hospitals are resistant to at least one of the drugs most commonly used for treatment.

Contreras-Martin Research Lab Graduate Recruiting Weekend- 2.26.2011

"Possibly the most pregnant recent development in molecular biology is the realization that the beginnings of life are closely associated with the interactions of proteins and nucleic acids" — <u>Florence O. Bell</u>

Example: Bacterial ribosome critical for survival (Nobel Prize, 2009)

Contreras-Martin Research Lab Graduate Recruiting Weekend- 2.26.2011

Molecular aspects of RNA-based recognition

Challenge: Understanding how to discriminate among all cellular molecules for **recognition of a specific target RNA**

- Structural and chemical features of RNAs that allow them to be recognized as drug targets?
- How do these interactions rearrange with environmental changes?
- How do they recognize their natural targets?

E. coli cytoplasm ~6mg/ml RNA

Engineering RNAs and RNA-targeting molecules with novel functionality

Can we exploit these sophisticated recognition methods for the design and development of new biotechnologically and therapeutically relevant RNAs?

Understanding and Engineering RNAs

Engineer molecular tools to study:

- Structure
- Particle physics
- Chemical composition
- Modeling Techniques

Approach 1: Gain mechanistic insights about RNA-protein recognition

Approach 2: Exploit features of intermolecular interactions for new biotechnological

tools

- reconfigure cellular behavior
- Controllable RNA
 elements
- RNA-based sensors
- Predict resistance

Approach 3: Design of new RNA molecules and RNA-targeting compounds with novel functionality

- Random mutagenesis
- •Rational design
- •De novo design

Dr. Lydia Contreras-Martin Office: 5.410 CPE Email: <u>lcontrer@che.utexas.edu</u> Phone: 512-471-2453

