Keith Johnston Research Group

Nanomaterials Chemistry/Colloid and Interface Science/Polymer Science

kpj@che.utexas.edu

Protein stability and drug delivery

Morphology and protein-protein interactions Rheology: subcutaneous injection

Adv. Fxn'l Nanomaterials (metals, metal oxides, polymers))

Electrocatalysis = f (morphology) electronic properties, mechanistic pathways

O₂ reduction and evolution reactions for water splitting and metal air batteries, supercapacitors Biodegradable photonic Au nanoclusters for cancer imaging

Nanoparticle Interact. with Liq. and Solid Interfaces

Oil/water and gas/water interfaces (emulsions and foams) Solid surfaces (adsorption and transport in porous media)

Subcutaneous injection (SC) of concentrated monoclonal antibodies at 300 mg/ml is a major drug delivery challenge

- >20% of all biopharmaceuticals in clinical trials are mAbs
- cancer, allergies, asthma, inflammatory diseases, cardiovascular diseases, infectious diseases, etc.

Name	Indication	Company	Conc.
ACTEMRA	RA, juvenile arthritis	Genetech	180mg/mL
Herceptin	Breast and gastric cancer	Roche	120 mg/mL

- At high conc. spacings are small specific short-ranged attraction cause association and high viscosity
 - Hydrogen bonds, anisotropic elect. attraction
 - Hydrophobic interactions

Fv domains: light chain on left side Red: exposed negative patches

Agrawal et al, mAbs (16)

Use co-solutes to mitigate attractive interactions to lower viscosity up to 10 x

- Local anisotropic electrostatic attraction •
- Hydrophobic interactions
- **Depletion attraction**

Arginine

$$\frac{\eta}{\eta_0} = exp\left(\frac{c[\eta]}{1-c[\eta](k/\nu)}\right)$$
 Ross-Minton

$$\frac{\eta}{\eta_0} = exp\left(\frac{c[\eta]}{1-c[\eta](k/\nu)}\right)$$
 Ross-Minton

 $ln(\eta/\eta_0)$ $\eta_{inh} \equiv$

Chari et. al., Pharm. Res. (2009), Shukla et al., JPCB (2011), Hung et al., J Membr. Sci. (2016)

interaction sites

3

Research Goals

- Understand co-solute effects on protein viscosity/stability as function of interactions with proteins- break networks
- Characterize protein morphology, protein-protein interactions and network structure for 200-250+ mg/mL mAb
 - Static structure: SAXS, DLS, SLS,
 - Dynamic structure: DLS, shear rheology
 - Conformational stability: DSC/DSF, intrinsic fluorescence, CD
- Relate viscosity/stability to protein morphology and interactions
 - Effect of mAb structure, pH, and ionic strength
 - Develop design rules for cosolutes to achieve low viscosity (10 20 cP) and high stability
- Sponsors: NSF Inspire, Abbvie, Pfizer, Merck

SAXS: Co-solutes cause lower S(q)_{eff} at higher

conc

- Dividing S(q)_{co-solute} over S(q)_{none} shows the relative attraction/repulsion between samples with co-solute compared to those without co-solute for each q value
- Each q can be converted into a length scale

$$l_{Bragg} = \frac{2\pi}{q}$$

- As protein conc↑ and protein average spacing↓ the net effect of co-solutes is to increase net repulsion/decrease net attraction
- Eff causes more repulsion than Ineff for all concentrations

NIR Photoacoustic Imaging /Therapy: Cancer Theranostics

Nanoshells d = 130 nm

Nanorods 15 nm x 50 nm

Nanocages x = 50 nm

Nanoclusters

d = 30-80 nm

Hirsch et al. (2003) PNAS

Link et al. (1999) J Phys Chem B

Skrabalak et al. (2007) Adv. Mater. Tam, KPJ ACS Nano(13), Langmuir (10)

- Asymmetry shifts SPR from 532 nm to NIR- dipoles/multipoles
- Challenging to achieve NIR for particles < 5nm
- Clearance possible for biodegradable nanoclusters

Reversible Gold Nanoclusters for Imaging/Therapy

8

- Reversible equilibrium control of cluster size: self-limited growth
- NIR active nanoclusters with small particle spacing
- Design reversibility and lack of protein adsorption for clearance

Johnston, Sokolov, Truskett, Stover, Moaseri: ACS Nano (13), JACS (13), JPChem (14), Langmuir (16)

Chain Extension of Polyelectrolyte Brushes Grafted to Colloidal Silica Nanoparticles in High Salinity Brines

Hydrodynamic Diameter (nm) by DLS

Wormlike Micelles Impart Viscoelasticity for Ultra Dry Foams

90°C

-50°C

208 trillion m³ of CH_4 in shale (world)

2~5 million gallons of water/well for disposal

Catanionic micelles:

Jamming: slow drainage maintains thick lamellae

Fameau et al., Ang. Chem. (11)

Stable foams at only 2% water:

low drainage of viscoelastic lamellae

thicker lamellae resist Ostwald ripening and coalescence

Nanostructured Perovskite Oxides for Electrocatalysis:

Hardin, Johnston, K.P. et al. ; Highly Active LaNiO₃, J. Phys. Chem. Let. **2013**, Mefford, Hardin, Johnston, K.P. et al. ; LaMnO₃ Pseudocapacitor, Nature Mater. **2014**

Hardin, Mefford, Johnston, K.P. et al. ; Perovskite Active Site Variation, Chem. Mater. 2014, Nature Comm. 2016

Destination of PhD Students

- Gupta
- Balbuena
- Meredith
- Yates
- Da Rocha
- Lee
- Ziegler
- Lu
- Elhag

- Auburn
- buena Texas A + M
- eredith Ga. Tech.
- tes U. Rochester
- Rocha Virginia Tech.
 - U. S. California
 - U. Florida
 - Nat. Univ. Singapore
 - Petroleum Inst. (Abu Dhabi)

- Shah
- Pham
- Chen
- Dickson
- Smith
- Overhoff
- Engstrom
- Matteucci
- Gupta
- Tam
- Patel
- Ma
- Miller
- Slanac
- Murthy
- Chen
- Xue
- Borwankar
- Worthen

- Pfizer
- Sematech
- Abbott
- Exxon-Mobil
- Exxon-Mobil
- Schering-Plough
- Bristol-Meyers-Squibb
- Dow
 - Exxon-Mobil
 - Bristol-Meyers-Squibb
 - Lam Research
 - Dupont
 - Medimmune
 - Dupont
- Roche
- Dow
 - Ecolab
 - Bristol-Meyers-Squibb
- Exponent

Protein therapeutics Jessica Hung Bart Dear bartondear@gmail.com

Gold imaging nanoclusters Ehsan Moaseri ehsanmoaseri@utexas.edu

Subsurface nanotechnology Carson Da Chola Dandamudi Shehab Alzobaidi shehab.alzobaidi@utexas.edu

Energy storage (electrochemistry) Will Hardin Caleb Alexander calebta107@gmail.com

NSF Inspire Program DOE CFSES, DOE NETL Advanced Energy Consortium, AbbVie, Pfizer, Merck

Welch Foundation Abu Dhabi Nat. Oil. Co. GOMRI, NSF CBET, NIH

Growth of 16 nm Magnetic Nanoparticles with High Crystallinity to Yield Magnetic Susceptibility of 4!

Growth rate (a.u.)

Precise control over particle nucleation/growth to control particle size and crystallinity

 $Fe(CH_3COO)_2$ dissociates rapidly at 210 C: high supersat.

for focused size distribution

crit. size is small for high monomer conc.

small particles grow faster than large ones arrest growth in focusing region

Applications: imaging- subsurface and biomedical, magnetic separations, sensors

$$\chi_i = \frac{M}{H} = \frac{\epsilon \mu_0 \pi M_d^2 D_p^3}{18k_B T}$$

Characterization: XRD (cryst. Structure), TEM: part. size, Mossbauer spectroscopy (Fe valence)

