Challenges and Opportunities in Solar-Driven Carbon Dioxide Reduction

Daniel J. Miller
Joint Center for Artificial Photosynthesis
Lawrence Berkeley National Laboratory
1 Cyclotron Road
Berkeley, CA 94720

The scalable production of liquid transportation fuels and commodity chemicals by sustainable reduction of carbon dioxide could reduce dependence on fossil fuels. Heightened concerns about the effects of atmospheric release of greenhouse gases on the global climate has spurred interest in developing technologies to capture and constructively utilize CO₂ from both point source emitters and from the atmosphere. While plants have developed exquisitely complex photosynthetic pathways to produce their food from sunlight, CO₂, and water, synthetic systems capable of photo-driven reduction of CO₂ are still in the proof-of-concept stage. These devices are typically comprised of: a photoabsorber to harvest light energy from the sun, a cathode where CO₂ is reduced to the desired product, an anode where water is oxidized to O₂, an electrolyte, and a membrane capable of permitting ion transport while preventing crossover of oxidation and reduction products. Fundamental work remains to be done on all of these components. This presentation will address current challenges facing sustainable reduction of CO₂ to useful products, including CO₂ capture and concentration, catalyst efficiency and selectivity, light absorber activity and stability, membrane conductivity and selectivity, and integration of these components into efficient prototype devices. Finally, early life-cycle assessments of photocatalytic CO₂ reduction systems will be discussed.