Back to Faculty Directory
Photo of Korgel, Brian
Office Location: GLT 1.232

Brian Korgel


Rashid Engineering Regents Chair

Department Research Areas:
Advanced Materials, Polymers and Nanotechnology

Research Group Website

Research Presentation for Prospective Graduate Students

Educational Qualifications

Ph.D., University of California at Los Angeles (1997)


Develop new methods for synthesizing nanostructured materials, fabricating devices based upon these materials, and studying their properties.


Nanotechnology can be defined as the study of material properties and interactions on a nanometer length scale. Our experimental group focuses on investigating size-tunable material properties, and the rational self-assembly and fabrication of nanostructures with atomic detail. This research finds applications in microelectronics and photonics, spintronics, coatings, sensors and biotechnology.


Nanowires have great potential in the study of unidirectional current flow and as local interconnects of nanometer-scale electronic devices. The synthesis and characterization of nanowires is critical in accessing their use. Germanium nanowires several micrometers in length can be grown at supercritical temperature and pressures in cyclohexane using gold nanocrystals to seed the wire growth. The temperature, concentration of the solution and nature of the precursor have and effect on the nanowires morphology. Characterization of the nanowires includes XPS, XRD, high-resoln. TEM and SEM, nanometer-scale EDS mapping, and DTA.

We have developed the synthesis of silicon and germanium nanocrystals in high temperature supercritical fluids. Thermal decomposition or reduction of silicon precursors at high temperatures and pressures results in sterically stabilized, highly crystalline particles with size-tunable optical properties. Characterization of the nanocrystals includes TEM, XPS, XRD, SAXS, photoluminescence, NMR, IR, mass spectroscopy, AFM and UV-Vis spectroscopy.


Some examples of device fabrication include 3D close packed silver nanoparticles in interdigitated arrays. These nanoparticle superlattices show linear current-voltage behavior while ordered fcc. At a particular temperature the fcc superlattice goes through a order-disorder transisition. Below this temperature, the superlattice behaves like a metal and above it behaves like an insulator. Disordered close packed nanocrystals exhibited insulating behavior at all temperatures. Other devices presently being explored include electron transport through nanowires and individual particles.


Interfacing nerve cells with nanostructures opens the doors for biomanipulation of the structures. This can be accomplished by either antibody-antigen recognition, or peptide recognition groups. Our group has explored the use of both of these techniques to attach fluoroescent semiconductor nanoparticle to living neurons. In addition, attempts are currently being made to establish electrical interactions between the nanocrystals and the biological systems, particularly through interactions directed at the nanometer scale.

Supercritical Fluids

Silver and gold nanoparticles sterically stabilized by ligands can be dispersed in supercritical ethane and carbon dioxide. The dispersibility is a strong function of the size of the particle, the density of the solvent and the chemistry. For example, “CO2-philic” ligands are required to stabilize particles in supercritical CO2, whereas, hydrophobic alkane ligands stabilize the particles in supercritical ethane. Increased solvent density is needed to disperse larger particles with higher Van der Waals attractive forces, which can be utilized for size-selective particle separations.

Material & Magnetic Properties

Manganese doped indium arsenide, grown in epitaxial layers, has been shown to exhibit a ferromagnetic Curie temperature that is dependent on the electric field strength and direction that the sample is subjected to. We are synthesizing new dilute magnetic semiconductor nanocrystals and nanowires, such as manganese-doped indium arsenide, and studying their unique size and composition tunable optical, electronic and magnetic properties. Much of the physical properties of these materials are largely unexplored and their study depends on the ability to overcome the synthetic challenges of controlling nanostructure size and composition. For example, this line of research involves incorporating dopants uniformly through the nanocrystals, controlling the dopant amount, measuring the concentration of components in the sample, and characterizing the properties of these new materials.

Awards & Honors

  • International Union of Pure and Applied Chemistry (IUPAC) Young Observer, 2013
  • American Association for the Advancement of Science (AAAS) Fellow, 2012
  • American Institute of Chemical Engineers (AIChE) Professional Progress Award, 2012
  • Distinguished Visiting Professor of the Chinese Academy of Sciences, 2012
  • Nanoscale Science and Engineering Forum (NSEF) Forum Award from the American Institute of Chemical Engineers (AIChE), 2011
  • National Tsing Hua University, Taiwan, Department of Chemical Engineering, The Next Power Lectureship, 2010
  • 9th Distinguished Su Lectureship, The University of Rochester, Department of Chemical Engineering, 2010
  • Edith and Peter O’Donnell Award The Academy of Medicine, Engineering and Science of Texas (TAMEST), 2009
  • Sandia National Laboratory Distinguished Lecturer, 2008
  • Frank A. Liddell, Jr. Centennial Fellow in Chemical Engineering, 2002-2007
  • Chevron Centennial Teaching Fellow, 2001-2002
  • Roy-Somiya Medal of the International Solvothermal and Hydrothermal Association (ISHA), 2008
  • Fulbright Senior Scholar, Spain, 2007-2008
  • Engineering Foundation Young Faculty Award, 2001
  • 3M Non-tenured Faculty Grant Award, 2001
  • Discover Magazine Awards for Technological Innovation Finalist, 2001
  • Halliburton/Brown & Root Young Faculty Excellence Award, 2000
  • National Science Foundation (NSF) CAREER Award, 2000
  • DuPont Young Professor Award, 2000
  • European Union TM&R Fellow, University College Dublin, 1997-1998
  • UCLA Alumni Distinguished Scholar, 1997

Selected Publications

  • Locritani, M.; Yu, Y.; Bergamini, G.; Baroncini, M.; Molloy, J. K.; Korgel, B. A.; Ceroni, P., “Silicon Nanocrystals Funcationalized with Pyrene Units: Very Efficient Light-Harvesting Antennae with Bright Near-Infrared Emission,” The Journal of Physical Chemistry Letters(2014)
  • X. Lu, B. A. Korgel, “A Single-Step Reaction for Silicon and Germanium Nanorods,” Chemistry: A European Journal 20 (2014) 5874-5879.
  • T. D. Bogart, D. Oka, X. Lu, M. Gu, C. Wang, B. A. Korgel, “Lithium Ion Battery Performance of Silicon Nanowires With Carbon Skin,” ACS Nano 8 (2014) 915-922.
  • C. Jackson Stolle, T. B. Harvey, D. R. Pernik, J. I. Hibbert, J. Du, D. J. Rhee, V. A. Akhavan, R. D. Schaller, B. A. Korgel, “Multiexciton Solar Cells of CuInSe2 Nanocrystals,” Journal of Physical Chemistry Letters 5 (2014) 304-309.
  • B. W. Goodfellow, M. R. Rasch, C. M. Hessel, R. N. Patel, D.-M. Smilgies, B. A. Korgel, “Ordered Structure Rearrangements in Heated Gold Nanocrystal Superlattices,” Nano Letters 13 (2013) 5710-5714.
  • M. G. Panthani, T. A. Khan, D. K. Reid, D. K. Reid, D. J. Hellebusch, M. R. Rasch, J. A. Maynard, B. A. Korgel, “In Vivo Whole Animal Fluorescence Imaging of Microparticle-Based Oral Vaccine Containing (CuInSxSe2-x)/ZnS Core/Shell Quantum Dots,” Nano Letters 13 (2013) 4294-4298.
  • X. Lu, C. M. Hessel, Y. Yu, T. D. Bogart, B. A. Korgel, “Colloidal Synthesis of Luminescent Silicon Nanorods,” Nano Letters 13 (2013) 3101-3105.
  • T. D. Bogart, A. M. Chockla, B. A. Korgel, “High Capacity Lithium Ion Battery Anodes of Silicon and Germanium,” Current Opinion in Chemical Engineering, 2 (2013) 286-293.192.
  • V. C Holmberg, T. D. Bogart, A. M. Chockla, C. M. Hessel, B. A. Korgel, “Optical Properties of Silicon and Germanium Nanowire Fabric,” The Journal of Physical Chemistry C, 116 (2012) 22486-22491.
  • C. Steinhagen, T. Harvey, C. J. Stolle, J. Harris, B. A. Korgel, “Pyrite Nanocrystal Solar Cells: Promising, or Fool’s Gold?” The Journal of Physical Chemistry Letters, 3 (2012) 2352-2356.
  • M. R. Rasch, Y. Yu, C. Bosoy, B. W. Goodfellow, “Chloroform-Enhanced Incorporation of Hydrophobic Gold Nanocrystals into Dioleoylphosphatidylcholine (DOPC) Vesicle Membranes,” Langmuir, 28 (2012) 12971-12981.
  • M. G. Panthani, C. M. Hessel, D. Reid, G. Casillas, M. J.-Yacaman, B. A. Korgel, “Graphene-Supported High Resolution TEM and STEM Imaging of Silicon Nanocrystals and their Capping Ligands,” The Journal of Physical Chemistry C, 116 (2012) 22463-22468.
  • V. C. Holmberg, K. A. Collier, B. A. Korgel, “Real-Time Observation of Impurity Diffusion in Silicon Nanowires,” Nano Letters 11 (2011) 3803-3808.
  • C. M. Hessel, V. Pattani, M. Rasch, M. G. Panthani, B. Koo, J. W. Tunnell, B. A. Korgel, “Copper Selenide Nanocrystals for Photothermal Therapy,” Nano Letters 11 (2011) 2560-2566.
  • A. M. Chockla, J. T. Harris, V. A. Akhavan, T. D. Bogart, V. C. Holmberg, C. Steinhagen, C. B. Mullins, K. J. Stevenson, B. A. Korgel, “Silicon Nanowire Fabric as a Lithium Ion Battery Electrode,” Journal of the American Chemical Society, 133 (2011) 20914-20921.
  • A. T. Heitsch, V. A. Akhavan, B. A. Korgel, “Rapid SFLS Synthesis of Si Nanowires Using Trisilane with In Situ Alkyl-Amine Passivation,” Chemistry of Materials 23 (2011) 2697-2699.
  • M. R. Rasch, E. Rossinyol, J. L. Hueso, B. W. Goodfellow, J. Arbiol, B. A. Korgel, “Hydrophobic Gold Nanocrystal Self-Assembly with Phosphatidylcholine Lipid: Membrane-Loaded and Janus Vesicles,” Nano Letters 10 (2010) 3733-3739.
  • V. A. Akhavan, B. W. Goodfellow, M. G. Panthani, D. K. Reid, D. J. Hellebusch, T. Adachi, B. A. Korgel, “Spray-Deposited CuInSe2 (CIS) Nanocrystal Photovoltaics,” Energy & Environmental Science 3 (2010) 1600-1610.
  • D. A. Smith, V. C. Holmberg, B. A. Korgel, “Flexible Germanium Nanowires: Ideal Strength, Room Temperature Plasticity and Bendable Semiconductor Fabric,” ACS Nano 4 (2010) 2356-2362.
  • C. M. Hessel, A. T. Heitsch, B. A. Korgel, “Gold Seed Removal from the Tips of Silicon Nanorods,” Nano Letters 10 (2010) 176-180.
  • C. Steinhagen, M. G. Panthani, V. Akhavan, B. Goodfellow, B. Koo, B. A. Korgel, “Synthesis of Cu2ZnSnS4 (CZTS) Nanocrystals for Use in Low-Cost Photovoltaics,” Journal of the American Chemical Society 131 (2009) 12554-12555.
  • V. C. Holmberg, M. G. Panthani, B. A. Korgel, “Phase Transitions, Melting Dynamics and Solid-State Diffusion in a Nano Test Tube,” Science 326 (2009) 405-407.
  • D. K. Smith, N. R. Miller, B. A. Korgel, “Iodide in CTAB Prevents Gold Nanorod Formation,” Langmuir 25 (2009) 9518-9524.
  • D. K. Smith, B. Goodfellow, D. M. Smilgies, B. A. Korgel, “Self-Assembled Simple Hexagonal AB2 Binary Nanocrystal Superlattices: SEM, GISAXS and Defects,” Journal of the American Chemical Society 131 (2009) 3281-3290.
  • B. A. Korgel, “Semiconductor Nanowires: A Chemical Engineering Perspective,” AIChE Journal 55 (2009) 842-848.
  • B. Koo, R. N. Patel, B. A. Korgel, “CuInSe2 Nanocrystals: Synthesis, Trigonal Pyramidal Shape, and Self-Assembly into Triangular Lattices,” Journal of the American Chemical Society 131 (2009) 3134-3135.
  • M. G. Panthani, V. Akhavan, B. Goodfellow, J. P. Schmidtke, L. Dunn, A. Dodabalapur, P. F. Barbara, B. A. Korgel, “Synthesis of CuInS2, CuInSe2 and Cu(InxGa1-x)Se2 (CIGS) Nanocrystal ‘Inks’ for Printable Photovoltaics,” Journal of the American Chemical Society 130 (2008) 16770-16777.
  • D. K. Smith, B. Goodfellow, D. M. Smilgies, B. A. Korgel, “Self-Assembled Simple Hexagonal AB2 Binary Nanocrystal Superlattices: SEM, GISAXS and Defects,” Journal of the American Chemical Society 131 (2009) 3281-3290.
  • A. T. Heitsch, D. D. Fanfair, H.-Y. Tuan, B. A. Korgel, “Solution-Liquid-Solid (SLS) Growth of Silicon Nanowires,” Journal of the American Chemical Society 130 (2008) 5436-5437.
  • D. A. Smith, V. Holmberg, D. C. Lee, B. A. Korgel, “Young’s Modulus and Size-Dependent Mechanical Quality Factor of Nanoelectromechanical Germanium Nanowire Resonators,” Journal of Physical Chemistry C 112 (2008) 10725-10729.
  • D. K. Smith, B. A. Korgel, “The Importance of the CTAB Surfactant on the Colloidal Seed-Mediated Synthesis of Gold Nanorods,”Langmuir 24 (2008) 644-648.
  • B. Koo, B. A. Korgel, “Coalescence and Interface Diffusion In Linear CdTe/CdSe/CdTe Heterojunction Nanorods,” Nano Letters 8 (2008) 2490-2496.
  • D. C. Lee, D. K. Smith, A. T. Heitsch, B. A. Korgel, “Colloidal Magnetic Nanocrystals: Synthesis, Properties and Applications,” Annual Reports on the Progress of Chemistry, Section C: Physical Chemistry 103(2007) 351-402.
  • F. M. Davidson, D. C. Lee, D. D. Fanfair, B. A. Korgel, “Lamellar Twinning in Semiconductor Nanowires,” Journal of Physical Chemistry C 111 (2007) 2929-2935.
  • F. M. Davidson, D. C. Lee, D. D. Fanfair, B. A. Korgel, “Lamellar Twinning in Semiconductor Nanowires,” Journal of Physical Chemistry C 111 (2007) 2929-2935.
  • A. E. Saunders, A. Ghezelbash, D.-M. Smilgies, M. B. Sigman, B. A. Korgel, “Columnar Self-Assembly of Colloidal Nanodisks,” Nano Letters 6 (2006) 2959-2963.
  • H.-Y. Tuan, D. C. Lee, B. A. Korgel, “Nanocrystal-Mediated Crystallization of Silicon and Germanium Nanowires in Organic Solvents: The Role of Catalysis and Solid-Phase Seeding,” Angewandte Chemie-International Edition, 45 (2006) 5184-5187.
  • M. B. Sigman, B. A. Korgel, “Strongly Birefringent Pb3O2Cl2 Nanobelts,” The Journal of the American Chemical Society, 127 (2005) 10089-10095.
  • D. C. Lee, T. Hanrath, B. A. Korgel, “Role of Precursor Decomposition Kinetics in Silicon Nanowire Synthesis in Organic Solvents,” Angewandte Chemie International Edition, 44 (2005) 3573-3577.
  • T. Hanrath, B.A. Korgel, “Chemical Surface Passivation of Ge Nanowires,” Journal of the American Chemical Society, 126 (2004) 15466-15472.
  • A. E. Saunders, P. S. Shah, M. B. Sigman, T. Hanrath, H. S. Hwang, K. T. Lim, K. P. Johnston, B. A. Korgel, “Inverse Opal Nanocrystal Superlattice Films,” NanoLetters, 4 (2004) 1943-1948.
  • D. C. Lee, F. V. Mikulec, B. A. Korgel, “Carbon Nanotube Synthesis in Supercritical Toluene,” Journal of the American Chemical Society, 126 (2004) 4951-4957.
  • M.B. Sigman, A. Ghezelbash, T. Hanrath, A.E. Saunders, F. Lee, B.A. Korgel, “Solventless Synthesis of Monodisperse Cu2S Nanorods, Nanodisks, and Nanoplatelets,” Journal of the American Chemical Society, 125 (2003) 16050-16057.
  • Z. Ding, B. Quinn, S. Haram, L.E. Pell, B.A. Korgel, A.J. Bard, “Electrochemistry and Electrogenerated Chemiluminescence from Silicon Nanocrystal Quantum Dots,” Science, 296 (2002) 1293-1297.
  • J. D. Holmes, K. P. Johnston, R. C. Doty, B. A. Korgel, “Control of the Thickness and Orientation of Solution-Grown Silicon Nanowires,” Science, 287 (2000) 1471-1473.
  • J. J. Gray, D. H. Klein, R. T. Bonnecaze, B. A. Korgel, ” Non-Equilibrium Phase Behavior During the Random Sequential Adsorption of Tethered Hard Disks,” Physical Review Letters, 85 (2000) 4430-4433.

Industrial and Academic Leadership

Visiting Professor, Université Josef Fourier, Department of Physics, 2008
Visiting Professor, Universidad de Alicante, Department of Applied Physics, 2007-2008
Co-Founder, Piñon Technologies, 2007
Co-Founder, Innovalight, 2002
Advisor: AIChE student chapter, 1999-2003
Associate Editor, Journal of Crystal Growth
Associate Editor, Materials Science and Engineering: R
Editorial Advisory Board, Chemistry of Materials
Editorial Advisory Board: Journal of Colloid & Interface Science
Texas Nanotechnology Scientific Review Board
Director, Doctoral Portfolio Program in Nanoscience and Nanotechnology at UT Austin