Inkjet-Printed Lithium-Sulfur Microcathodes for All-Printed, Integrated Nanomanufacturing

by Milroy, CA; Jang, S; Fujimori, T; Dodabalapur, A; Manthiram, A

Web of Science; MAR 21 2017; Volume: 13; Issue: 11; Article Number: UNSP 1603786; DOI 10.1002/smll.201603786

Improved thin-film microbatteries are needed to provide appropriate energy-storage options to power the multitude of devices that will bring the proposed “Internet of Things” network to fruition (e.g., active radio-frequency identification tags and microcontrollers for wearable and implantable devices). Although impressive efforts have been made to improve the energy density of 3D microbatteries, they have all used low energy-density lithium-ion chemistries, which present a fundamental barrier to miniaturization. In addition, they require complicated microfabrication processes that hinder cost-competitiveness. Here, inkjet-printed lithium-sulfur (Li-S) cathodes for integrated nanomanufacturing are reported. Single-wall carbon nanotubes infused with electronically conductive straight-chain sulfur (S@SWNT) are adopted as an integrated current-collector/active-material composite, and inkjet printing as a top-down approach to achieve thin-film shape control over printed electrode dimensions is used. The novel Li-S cathodes may be directly printed on traditional microelectronic semicoductor substrates (e.g., SiO2) or on flexible aluminum foil. Profilometry indicates that these microelectrodes are less than 10 mu m thick, while cyclic voltammetry analyses show that the S@SWNT possesses pseudocapacitive characteristics and corroborates a previous study suggesting the S@SWNT discharge via a purely solid-state mechanism. The printed electrodes produce approximate to 800 mAh g(-1) S initially and approximate to 700 mAh g(-1) after 100 charge/discharge cycles at C/2 rate.

Read the article